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Abstract. A new class of electromagnetic fields within the realm of the axially symmetric 
gravitational fields is obtained. It is shown that this class of fields is obtained as a solution of 
the Painlevt. differential equation. 

Various classes of solution of the Einstein-Maxwell field equations in an axially sym- 
metric static space-time have been discussed in the literature (Misra and Radhakrishna 
1962, Harrison 1965,1968, Misra 1970, Gautreau and Hoffman 1970, Misra and Pandey 
1971, Misra et a1 1973). In this paper we outline a method by which one can generate 
a new class of electromagnetic fields which is different from all previously known 
solutions. 

Consider the following set of field equations : 

where 

1 
4rl 

E . .  = -(gkfFikFj,  -$ggijFklFkf). (4) 

The symbols used here have their usual meaning. Let us consider the axisymmetric 
static metric in the form : 

w2 ( 5 )  ds2 = e2U dt2 - ezk-2”(dp2 + dz2) - p2 e-2U 

where U and k are functions of p and z only. 
Now, the field equations (1) can be obtained if the components of E,, are known. 

The components of the Maxwell tensor can be obtained in this case with the help of 
only two components of the four-potential. If one introduces the potentials A and B 
in the following manner (Harrison 1968, Misra 1970): 

where A = A ( p ,  z )  and B = B(p, z ) ,  one obtains the stress tensor E,, in a symmetrical 
form with respect to A and B. Further, there are only two nontrivial Maxwell equations 
amongst (2) and (3) which are identical with regard to A and B. This situation leads 
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one to introduce a single potential C (ie duality-rotation) such that : 

A = C sin 1 

B = C C O S ~  
(7)  

where 1 is a constant. These considerations lead to the following field and Maxwell 
equations : 

(8) 

c. 1 C,,,+C,2,+--2(C,,u,, +c.2u.2) = O! 
P 

(9) 

Let us introduce a new function a in the following manner : 

In view of equations (12), equation (9) is identically satisfied and its integrability condi- 
tions and the remaining equations (8)-( 11) yield : 

e'" 
V 2 u + i ( a * 1 2 + a . 2 2 )  = 0, 

P 

2 2a.1 V a--+2(a3,u,, +a,,u,,) = 0, 
P 

where 

is the two-dimensional laplacian operator. These equations may be expressed in an 
alternative form by the introduction of a scalar field P ( p ,  z )  and a vector field Q(p, z )  
defined by 

P(p,  z )  = In p - U, 

Q(p, z )  = e-'grad a, 

(17) 

(18) 

where grad is the usual vector operator defined with respect to the three-dimensional 
flat-space metric. 
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Equations (1 3) and (14) now take the form 

V 2 P  = Q.Q,  

divQ = Q .  L ,  

curlQ = Q x  L, 

where (21) arises from the integrability condition u q 1 2  = and L = grad P. 
Equations (15) and (16) may be written in the vector form 

curl K = 2 { - (f - R  l )  P., - QlQ2} p + {PY2. - (f - P  l )  + Q: - Qi)Z (22) 

where p, Cp and Z are unit vectors along the corresponding coordinate curves and 

1 
P 

K = -kCp. Q = PQi +ZQ2, 

One obtains from (19)-(21), if Q # 0, 

(23) 
1 

grad P = -i{(divQ)Q-Qx curlQ). 
Q 

Various classes of known electromagnetic fields are obtained by specifying particular 
relations between L and Q, for example, if L . Q = (l/p)Q,, the Weyl class of electro- 
magnetic fields is obtained (Misra and Radhakrishna 1962, Misra et a1 1973). 

A new class of electromagnetic fields is obtained by choosing Q = p f ( p ) + Z h ( p ) ,  
where f and h are functions of p only. From equation (23) one finds 

With the help of the above expressions for Q and L it only remains to satisfy the equations 
curl L = 0 and div L = Q2, which become 

where D is a constant. By eliminating f 2  + h2 and integrating one gets two equations : 

f h 2  hl 
D DP 

h.1 =of--+--, 

where 1 is a second arbitrary constant. Now, it is possible to eliminate either of the 
independent variables from (24). Elimination of h from (24) yields the second order 
equation 
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Further, on making the substitutions R = f2/(D2 + f 2 )  and S = p2 equation (25) reduces 
to 

d2R 1 dR D2R (D+1)2R(1-R)2 
(26) 2D2S2 

which is a standard differential equation with fixed critical points defining a Painlevk 
transcendent (Ince 1927). 

Thus, fromequations (26) and (24) we can calculate the values off and h. Oncefand h 
are known, the solution is easily obtained. 
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